
Model Checking in Bits and Pieces

Ariel Cohen1, Kedar S. Namjoshi2?, Yaniv Sa’ar3,
Lenore D. Zuck4??, and Katya I. Kisyova4

1 New York University, New York, NY. Email: arielc@cs.nyu.edu
2 Bell Labs, Alcatel-Lucent, Murray Hill, NJ. Email: kedar@research.bell-labs.com
3 Weizmann Institute of Science, Rehovot, Israel. Email: yaniv.saar@weizmann.ac.il
4 University of Illinois at Chicago, Chicago, IL. Email:{lenore,kkisyo2}@cs.uic.edu

The central thesis explored in this paper is that parallel model checking is easily achieved
through compositional methods. This may strike the reader as being self-evident. Nev-
ertheless, it does not appear to have been considered before. The justification comes
from the following observations: (1) the efficacy of a parallel program is inversely pro-
portional to the amount of synchronization and communication across processors, and
(2) compositional methods break up the analysis into nearly-independent parts; in each
part, a program component is analyzed with limited knowledge of the internal state of
other components. For loosely coupled programs, therefore, one may expect composi-
tional methods to work well, and to further benefit from parallelization.

To test this thesis, we have implemented a parallel version of an assertional com-
positional model checking method. A brief introduction is necessary in order to ex-
plain the parallel algorithm. The basis is a computation of a vector of assertions, θ =
(θ1, θ2, . . . , θn), with the following properties: (1) each θi is an assertion defined over
the state visible to process i; (2) θi is a local inductive invariant for process i; and (3) the
conjunction (

∧
i : θi) is a globally inductive invariant. We call such a vector a “split in-

variant”. These conditions correspond to the interference-free proof outlines of Owicki
and Gries [13], and the thread-modular safety proofs of Flanagan and Qadeer [7].

It was shown in [12] that there is a strongest split invariant, which can be computed
symbolically (for instance, with BDDs) through a simultaneous fixpoint computation.
It is well known (cf. [11, 13]) that a split invariant may be too weak to prove a safety
property, and that this can be remedied by adding auxiliary shared variables to expose
internal process state. Heuristics for discovering relevant auxiliary variables are de-
veloped in [2]; iterating these heuristics makes the method complete. Compositional
methods have been developed to verify general liveness and fairness properties using
split invariance [3, 4].

The fixpoint computation for the strongest split invariant is the basis for parallelization.
In a fixpoint step, every component of θ is simultaneously updated as follows.

θ′
i = Ii ∨ spi(Ti, θi) ∨ (∨ k : k 6= i : spi(T k ∧ unchanged(Li), θi)) (1)

? Kedar Namjoshi’s research was supported, in part, by National Science Foundation grant CCR-
0341658.

?? This material was based on work supported by the National Science Foundation, while Lenore
Zuck was working at the Foundation. Any opinion, finding, and conclusions or recommenda-
tions expressed in this article are those of the author and do not necessarily reflect the views
of the National Science Foundation.

The update for component i includes: (1) the initial condition Ii of process i; (2) clo-
sure under transitions Ti of process i, represented by the strongest post-condition term
spi(Ti, ◦); and (3) closure under interference from all other processes, given by the
sp(Tk ∧ unchanged(Li), ◦) terms. The interference from process k is represented by
the summary transition, T k, defined as (∃Lk, L

′
k : Tk ∧ θk). It restricts process k’s

transition to states satisfying θk and quantifies out the local state variables Lk to obtain
the net effect on the shared state of a move by process k.

The key to parallelization is the chaotic iteration theorem from [5]. It allows the simulta-
neous fixpoint to be computed lazily, via any fair schedule of the individual updates. To
parallelize the computation, therefore, we simply distribute the fixpoint updates across
processors, as shown in Figure 1, where processor i computes the component θi.

local variables θi, T [1..n];

θi := Ii; // initialize θi

forall k : k 6= i : T [k] := false; // set known summaries to empty
while (not globally converged){

while (θi does not stabilize){// compute fixpoint update
θi := θi ∨ spi(Ti, θi) ∨ (∨ k : k 6= i : spi(T [k] ∧ unchanged(Li), θi))

}
asynchronously broadcast new summary T [i] = (∃Li, L

′
i : Ti ∧ θi);

}

Fig. 1. Outline of the computation for Processor i. Vector T represents summary transitions. A
secondary thread receives updates for T entries asynchronously from other threads.

This is a general schema for parallelization, which can be implemented in many ways.
One axis is symbolic (BDD-based, say) vs. explicit-state. A symbolic implementation
would broadcast new summaries as symbolic terms. Another axis is shared-memory vs.
distributed. The advantage of a distributed implementation is that each processor has its
own memory space, while the overall memory is shared between processors in a multi-
core implementation. A third axis is the organization of the broadcast, which is perhaps
more of an issue in the distributed implementation.

For now, we have experimented with a symbolic (BDD-based), multi-core, shared mem-
ory implementation. The experiments use parameterized protocols, so as to easily vary
the size of the state space. They also examine the role played by loose coupling and
load balancing. MUXSEM (semaphore-based mutual exclusion) is uniform and bal-
anced. SZYMANSKI is also uniform and balanced but more tightly coupled (summary
BDDs are larger). German’s cache coherence protocol has an unbalanced client-server
nature, but could be rebalanced for analysis. PETERSON’s exclusion protocol requires
significantly complex summary transitions. Except PETERSON, other protocols need a
small amount of auxiliary state to be exposed. These protocols are hard to handle by
monolithic model checking for larger instances, as shown in [2]. Sequential and paral-
lel algorithms are both implemented in Java using JTLV [14] and a JAVA BDD package
based on BUDDY.

The experiments compare sequential and parallel calculations for split invariance. It
should be noted that the sequential calculation is itself significantly faster than a non-
compositional reachability calculation. The results from Table 1 show that paralleliza-
tion is quite effective. The “efficiency” number (Eff.) is the ratio of the actual speed-up
to the ideal speed-up. It is greater than 1 in some cases, possibly due to favorable cache
usage. Those programs which are more loosely coupled than others have better parallel
performance (e.g., MUXSEM and GERMAN over SZYMANSKI and PETERSON). The
results support the main thesis, that parallelization of compositional methods can be
very effective. Compositionality is not a panacea, however: tightly coupled programs
are more difficult to analyze compositionally and may not show much improvement
with parallelization. The expectation, though, is that most distributed protocols and
shared-memory asynchronous programs are sufficiently loosely coupled.

Parallel model checking is an active research area for both explicit-state and symbolic
algorithms ([9,15] and [1,6,8,10] are representative). Nonetheless, prior work has not
explored the uses of compositionality for parallel model checking. Our early experience
is that the parallel implementation is particularly simple, with significant benefit for
loosely coupled programs.

References

1. G. Cabodi, P. Camurati, A. Lioy, M. Poncino, and S. Quer. A parallel approach to symbolic
traversal based on set partitioning. In CHARME, pages 167–184, 1997.

2. A. Cohen and K. S. Namjoshi. Local proofs for global safety properties. In CAV, volume
4590 of LNCS, pages 55–67. Springer, 2007.

3. A. Cohen and K. S. Namjoshi. Local proofs for linear-time properties of concurrent pro-
grams. In CAV, volume 5123 of LNCS, pages 149–161. Springer, 2008.

4. A. Cohen, K. S. Namjoshi, and Y. Sa’ar. A dash of fairness for compositional reasoning. In
CAV, 2010. (to appear).

5. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions: mathemati-
cal foundations. In ACM Symposium on Artificial Intelligence & Programming Languages,
Rochester, NY, ACM SIGPLAN Not. 12(8):1–12, Aug. 1977.

6. J. Ezekiel, G. Lüttgen, and G. Ciardo. Parallelising symbolic state-space generators. In CAV,
volume 4590 of LNCS, pages 268–280. Springer, 2007.

7. C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN, volume 2648 of
LNCS, pages 213–224, 2003.

8. O. Grumberg, T. Heyman, and A. Schuster. A work-efficient distributed algorithm for reach-
ability analysis. Formal Methods in System Design, 29(2):157–175, 2006.

9. G. J. Holzmann and D. Bosnacki. The design of a multicore extension of the SPIN model
checker. IEEE Trans. Software Eng., 33(10):659–674, 2007.

10. S. K. Iyer, D. Sahoo, E. A. Emerson, and J. Jain. On partitioning and symbolic model
checking. IEEE Trans. on CAD of Integrated Circuits and Systems, 25(5):780–788, 2006.

11. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software Eng.,
3(2), 1977.

12. K. S. Namjoshi. Symmetry and completeness in the analysis of parameterized systems. In
VMCAI, volume 4349 of LNCS, 2007.

13. S. S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic approach.
Commun. ACM, 19(5):279–285, 1976.

sequential 2 cores 4 cores 8 cores
N Time Time Speedup Eff. Time Speedup Eff. Time Speedup Eff.

MUXSEM

512 27 16 1.68 0.84 8.3 3.25 0.81 4.8 5.6 0.70
1024 117 65.8 1.77 0.88 34.8 3.3 0.82 19.2 6.1 0.76
1536 360 203 1.77 0.88 112 3.2 0.80 65 5.5 0.69
2048 561 314 1.80 0.90 165 3.4 0.85 92 6.1 0.76

SZYMANSKI

5 3.1 2.4 1.29 0.64 1.6 1.93 0.48 1.1 2.81 0.35
6 20.5 11.6 1.76 0.88 6.5 3.15 0.78 4.4 4.65 0.78
7 130 73.5 1.76 0.88 41 3.17 0.79 23.7 5.48 0.78
8 564 302 1.87 0.93 163 3.46 0.86 93 6.06 0.76
9 2896 1362 2.12 1.06 739 3.91 0.97 492 5.88 0.73

GERMAN

8 185 78 2.37 1.19 44 4.20 1.05 31 5.96 0.74
9 489 234 2.08 1.04 126 3.88 0.97 76 6.40 0.80
10 1076 511 2.10 1.05 268 4.00 1.00 164 6.56 0.82
11 2867 1310 2.18 1.09 691 4.14 1.03 385 7.44 0.93
12 over BDD limit 3505 - - 1819 - - 1013 - -

PETERSON’s
4 0.7 1.1 0.63 0.32 0.9 0.77 0.19 0.9 0.77 0.17
5 8.5 6.7 1.26 0.63 4 2.1 0.50 3.2 2.6 0.52
6 183 109 1.68 0.84 66 2.77 0.70 46 3.98 0.66

Table 1. Test results for MUXSEM, SZYMANSKI, GERMAN and PETERSON’s. The machine is
a dual-quad-core AMD Opteron (8 cores total), with 1.1GHz clock-speed, 512KB cache, and
32G RAM.

14. A. Pnueli, Y. Sa’ar, and L. D. Zuck. JTLV- a framework for developing temporal verification
algorithms. In CAV, 2010. (to appear) http://jtlv.sourceforge.net/.

15. U. Stern and D. L. Dill. Parallelizing the Murϕ verifier. Formal Methods in System Design,
18(2):117–129, 2001.

